Electromagnetic Tweezers with Independent Force and Torque Control
نویسندگان
چکیده
منابع مشابه
Sensorless Torque/Force Control
Motion control systems represent a main subsystem for majority of processing systems that can be found in the industrial sector. These systems are concerned with the actuation of all devices in the manufacturing process such as machines, robots, conveyor systems and pick and place mechanisms such that they satisfy certain motion requirements, e.g., the pre specified reference trajectories are f...
متن کاملControl with a Compliant Force-Torque Sensor
There are assembly tasks which require a compliant device at the end-effector since possible disturbances are beyond the bandwidth of robot control. This paper discusses a compliant force-torque sensor for assembly. Two aspects are explained in detail: Force control considering a significant force dependent displacement, and control of an end-effector with an elastic mounting during fast uncons...
متن کاملElectromagnetic force and torque on magnetic and negative-index scatterers.
We derive the analytic expressions of the electromagnetic force and torque on a dipolar particle, with arbitrary dielectric permittivity and magnetic permeability. We then develop a general framework, based on the coupled dipole method, for computing the electromagnetic force and torque experienced by an object with arbitrary shape, dielectric permittivity and magnetic permeability.
متن کاملBlind Predictions of DNA and RNA Tweezers Experiments with Force and Torque
Single-molecule tweezers measurements of double-stranded nucleic acids (dsDNA and dsRNA) provide unprecedented opportunities to dissect how these fundamental molecules respond to forces and torques analogous to those applied by topoisomerases, viral capsids, and other biological partners. However, tweezers data are still most commonly interpreted post facto in the framework of simple analytical...
متن کاملElectromagnetic torque and force in axially symmetric liquid-crystal droplets.
Circularly polarized light exerts torque on birefringent objects. In the case of axially symmetric particles, however, the moment of radiation force balances the direct optical torque. This explains the observation that radial liquid-crystal droplets, in contrast to planar droplets, do not spin in circularly polarized light. The conclusion is in agreement with considerations based on the angula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2015
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2014.11.1946